Industrial Process Controllers and Simulators

Topic 2

Architecture of a Computer Control Systems

Definition

"Industrial Control System is any sort of device/system which includes a programmable computer but mostly it is not intended to be recognized as a computer."

Operates in safety-critical environments.

Mostly involves the use of Real-Time Operating System.

Principles of operation

Industrial Control Systems

Controller-object interaction

Controller-Object Interaction

1. Signal exchange

- ▶ type of signals
- ▶ hardware I/O systems
- ▶ time-driven & event driven exchange

2. Interaction with the object

Controller-Object Interaction

- 1. Signal exchange
 - ▶ type of signals
 - ▶ hardware I/O systems
 - ▶ time-driven & event driven exchange
- 2. Interaction with the object

Signal Exchange

Signal Exchange

Two forms:

- ♦ Time-Driven
- ♦ Event-Driven

The interaction takes place at nredefined maments of time.
The interaction takes place when a certain event occurs

Main types:

- Continuous
- Discrete
- ♦ Hybrid

Continuous interaction signals – they

Discrete signals in both directions

The plant operates in a mixed mode

Main types:

- ♦ Continuous
- Discrete
- ♦ Hybrid

Main types:

- ♦ Continuous
- ♦ Discrete
- ♦ Hybrid

Interaction:

- ♦ The controller is a discontinuous machine.
- Both incoming to and outgoing from the controller signals are continuous.
- ♦ Requires analogous I/O subsystems
- ♦ Two types of signal quantifying
 - ▶ By level
 - ► By time

Signal Conversions:

- Quantifying by level
- Quantifying by time
- ♦ Discrete-to-analogous

Performed by the ADC

Performed by timers

Performed by the DAC

Analogous ICS -> time chart of operation

Analogous ICS -> how does it works

- Control device periodically executes a specific control task
- Period depends on the plant dynamics
- ♦ Period is based on interrupt requests
- Fluctuations of the moment for execution of phase 4 may occur

Basics of the interaction:

- ♦ Typical for the machinery construction industry and the transport industry.
- ♦ Both the plant and the control unit function discretely
- ♦ Exchanged signals are usually discrete
- Analogous signals used to create additional control conditions

Discrete Industrial Control Systems (DICS)

Evolution:

- ♦ Relay Schemes
- ♦ Digital Electronic Circuits
- ♦ Programmable Controllers
 - ► Programmable Logic Controllers
 - ► State Logic Controllers
- ♦ Synchronous vs. Asynchronous DICS

Plant and control device modeling and design

- Automata models
- Operational and control automaton
- Abstract synthesis of control automaton
 - Mealy Automata
 - Moore Automata
 - Petri Nets
 - ▶ etc.
- Structural synthesis of control automata

Programmable controller -> time chart

DICS programming

- 1. Different approaches for SLC and PLC
 - Abstract Synthesis for SLC
 - Structural Synthesis for PLC
- Languages -> specialized languages exist for both controllers types
 - ▶ PLC IEC 61131 Standards
 - ► SLC Petri Nets, FSM, or other visual language

