

544490-TEMPUS-1-2013-1-ES-TEMPUS-JPCR

Authors: Perles, A., Capella, J.V., Albaladejo, J.

MEDIS: A Methodology for the Formation of Highly

Qualified Engineers at Masters Level in the Design and

Development of Advanced Industrial Informatics Systems

WP2.1 Chapter 5.1: Process interface basics and digital input

Deliverable 2.1: AIISM teaching resources - Industrial Computers

MEDIS: A Methodology for the Formation of Highly

Qualified Engineers at Masters Level in the Design and

Development of Advanced Industrial Informatics Systems

WP2.1 Chapter 5.1: Process interface basics and digital input

Contract Number: 544490-TEMPUS-1-2013-1-ES-TEMPUS-JPCR

Starting date: 01/12/2013 Ending date: 30/11/2016

Contractual Date of Delivery to the CEC: 30/09/2014

Actual Date of Delivery to the CEC: 30/09/2014

Deliverable Number: 2.1

Title of the Deliverable: AIISM teaching resources - Industrial Computers

Task/WP related to the Deliverable: Development of the AIISM teaching resources - Industrial

Computers

Type (Internal or Restricted or Public): Public

Author(s): Perles, A., Capella, J.V., Albaladejo, J.

Deliverable 2.1: AIISM teaching resources - Industrial Computers

Context

WP 2 Design of the AIISM-PBL methodology

WPLeader Universitat Politècnica deValència (UPV)

Task 2.1 Development of the AIISM teaching resources - Industrial Computers

Task Leader UPV

Dependencies MDU, TUSofia, USTUTT, UP

Author(s) Perles, A., Capella, J.V., Albaladejo, J.

Reviewer(s) Martínez, J.M., Hassan, H.

History

Project Co-ordinator

Company name : Universitat Politecnica de Valencia (UPV)

Name of representative : Houcine Hassan

Address : Camino de Vera, s/n. 46022-Valencia (Spain)

Phone number : +34 96 387 7578

Fax number : +34 963877579

E-mail : husein@upv.es

Project WEB site address : https://www.medis-tempus.eu

Version Date Author Comments

0.1 01/03/2014 UPV Team Initial draft

1.0 19/09/2014 UPV Team Final version

Deliverable 2.1: AIISM teaching resources - Industrial Computers

Table of Contents

1 EXECUTIVE SUMMARY.. 1

2 INTRODUCTION .. 1

3 LECTURE ... 1

3.1 OBJECTIVES .. 1

3.2 BASIC CONCEPTS .. 1

3.2.1 SENSORS AND ACTUATORS ... 2

3.2.2 SENSE OF COMMUNICATION ... 3

3.2.3 TYPES OF SIGNALS ... 4

3.2.3.1 DIGITAL SIGNALS ... 4

3.2.3.2 ANALOG SIGNALS .. 6

3.3 DATA ACQUISITION SYSTEMS ... 6

3.3.1 BASIC CONCEPTS .. 6

3.3.2 DIGITAL INPUT .. 8

4 SEMINAR: DAQ APPLICATION WITH NATIONAL INSTRUMENTS DEVICES 11

4.1 OBJECTIVES .. 11

4.2 THE NI USB-6008 DAQ .. 11

4.3 DIGITAL INPUT/OUTPUT CONNECTIONS ... 12

4.4 SOFTWARE LIBRARIES: NI-DAQMX ... 13

5 LAB: DIGITAL INPUT .. 15

5.1 OBJECTIVE .. 15

5.2 EQUIPMENT .. 15

5.3 DEPARTING POINT ... 15

5.4 ACTIVITY ... 21

6 MINI-PROJECT : IMPLEMENTATION OF THE PROCESS INTERFACE MODULE: DIGITAL INPUT22

7 EXTRA: ACTIVITIES ... 22

8 REFERENCES .. 23

1

M
E

D
IS

:
A

 M
e

th
o

d
o

lo
g

y
fo

r
th

e
 F

o
rm

a
ti

o
n

 o
f

H
ig

h
ly

 Q
u

a
li
fi

e
d

 E
n

g
in

e
e

rs
 a

t
M

a
s
te

rs
 L

e
ve

l
in

 t
h

e
 D

e
s
ig

n
 a

n
d

 D
e

ve
lo

p
m

e
n

t
o

f
A

d
va

n
c
e

d
 I

n
d

u
s
tr

ia
l
In

fo
rm

a
ti

c
s
 S

ys
te

m
s

1 Executive summary

WP 2.1 details the learning materials of the Advanced Industrial Informatics Specialization

Modules (AIISM) related to the Industrial Computers Module.

The contents of this package follow the guidelines presented in the UPV’s documentation of

the WP 1 (Industrial Computers Module)

 The PBL methodology was presented in WP 1.1

 The list of the module’s chapters and the temporal scheduling in WP 1.2

 The required human and material resources in WP 1.3

 The evaluation in WP 1.4

During the development of this WP a separate document has been created for each of the

chapters of the Industrial Computers Module (list of chapters in WP1.2).

In each of these documents, section 2 introduces the chapter; sections 3, 4, 5 and 6 details the

Lecture, Laboratory, Seminar and Mini-project of the chapter; section 7 lists the bibliography

and the references.

2 Introduction

This chapter is dedicated to the basics of process interface. In order to know the state of an

industrial process and to achieve effective control actions, is necessary to establish a

communication mechanism between the physical and the virtual world inside the controlling

computer.

In this context, we name “process interface” to the set of circuits and programs in charge of

establishing that communication.

3 Lecture

3.1 Objectives

 To understand the concept of process interface.

 To know basic aspects of data acquisition.

 To learn to program basic process interfaces.

3.2 Basic concepts

Figure 1 represents graphically this piece in the Industrial Informatics System.

This lecture will describe basic concepts related to the process interface and generic

procedures to deal with this aspect of a computer based control.

 2

M
E

D
IS

:
A

 M
e

th
o

d
o

lo
g

y
fo

r
th

e
 F

o
rm

a
ti

o
n

 o
f

H
ig

h
ly

 Q
u

a
li
fi

e
d

 E
n

g
in

e
e

rs
 a

t
M

a
s
te

rs
 L

e
ve

l
in

 t
h

e
 D

e
s
ig

n
 a

n
d

 D
e

ve
lo

p
m

e
n

t
o

f
A

d
va

n
c
e

d
 I

n
d

u
s
tr

ia
l
In

fo
rm

a
ti

c
s
 S

ys
te

m
s

3.2.1 Sensors and actuators

The sensors and actuators are the only elements that are in physical contact with the industrial

process. They allow to know the physical state of the process and to modify it.

A sensor is a transducer that translates a physical magnitude into an electrical magnitude. This

electrical magnitude describes the value of a variable (position, temperature, pressure ...).

An actuator is a transducer that allows us to modify the state of a physical process by means

of an electrical magnitude.

Figure 2 (a) shows an example of a temperature sensor and an electrovalve actuator (b). These

elements are appropriate for the liquids tank model.

Figure 1: Idea of the interface with the process.

3

M
E

D
IS

:
A

 M
e

th
o

d
o

lo
g

y
fo

r
th

e
 F

o
rm

a
ti

o
n

 o
f

H
ig

h
ly

 Q
u

a
li
fi

e
d

 E
n

g
in

e
e

rs
 a

t
M

a
s
te

rs
 L

e
ve

l
in

 t
h

e
 D

e
s
ig

n
 a

n
d

 D
e

ve
lo

p
m

e
n

t
o

f
A

d
va

n
c
e

d
 I

n
d

u
s
tr

ia
l
In

fo
rm

a
ti

c
s
 S

ys
te

m
s

Figure 2: Temperature sensor (a) and electrovalve actuator (b).

3.2.2 Sense of communication

The information between the physical world and the abstract image inside the computer can

flow in both senses.

Defining the sense of the signals uses as a reference the controlling system (e.g. a computer,

PLC, microcontroller, …). For sensors, the signal is called an input, for actuators, the signal is

called output. Figure 3 represents this concept.

Figure 3: Signals sense in a control system.

In the most general case the sense of communication is bidirectional, so the information flows

both ways (from the sensors to the internal image and from that image to the actuators). This

case is called a closed loop control system because there is information feedback. Figure 4

shows a temperature regulator that uses an input for measuring temperature and an output for

handling a heather.

Figure 4: Temperature regulator.

When there is only output signal to actuators, the system is called open loop In that case; the

information about the current state of the process is just estimated For example, a stepper

 4

M
E

D
IS

:
A

 M
e

th
o

d
o

lo
g

y
fo

r
th

e
 F

o
rm

a
ti

o
n

 o
f

H
ig

h
ly

 Q
u

a
li
fi

e
d

 E
n

g
in

e
e

rs
 a

t
M

a
s
te

rs
 L

e
ve

l
in

 t
h

e
 D

e
s
ig

n
 a

n
d

 D
e

ve
lo

p
m

e
n

t
o

f
A

d
va

n
c
e

d
 I

n
d

u
s
tr

ia
l
In

fo
rm

a
ti

c
s
 S

ys
te

m
s

motor control is an output only system. Figure 5 shows an example of a typical actuator used

on open loop systems, a digital stepper motor.

Figure 5: Stepper motor.

On the other side, monitoring systems are just the contrary, the information that flows through

the interface is just “input”, from the sensors, as there is no intention of controlling the

process. For example, a “data-logger” is a typical monitoring system. Figure 6 shows an

example of monitor that reads information of the human pulse using a photosensor.

Figure 6: Pulse monitor.

3.2.3 Types of signals

There are two very different types of signals to deal with: digital and analog. The nature of

these types of signals is so different that it is necessary to provide different hardware and

software mechanisms to adapt the characteristics of the electrical signals involved.

The information or signals that flow between the IIS and the process can be of analog or

digital nature.

3.2.3.1 Digital signals

5

M
E

D
IS

:
A

 M
e

th
o

d
o

lo
g

y
fo

r
th

e
 F

o
rm

a
ti

o
n

 o
f

H
ig

h
ly

 Q
u

a
li
fi

e
d

 E
n

g
in

e
e

rs
 a

t
M

a
s
te

rs
 L

e
ve

l
in

 t
h

e
 D

e
s
ig

n
 a

n
d

 D
e

ve
lo

p
m

e
n

t
o

f
A

d
va

n
c
e

d
 I

n
d

u
s
tr

ia
l
In

fo
rm

a
ti

c
s
 S

ys
te

m
s

If the physical magnitude of interest can be represented using values in a discrete set, then we

can say that the electrical signal is digital.

It is usual that the signals represent two possible values (active/inactive, normal/alarm, etc.).

For example, figure 7 shows the possible state of a digital valve, that can be either open or

closed. In that case it is possible to represent the value of the interface using a single bit,

which value represent the open or close state, this procedure is called encoding. This single bit

corresponds to a single digital input line.

Others cases include more than two values. As an example, next table contains the discrete set

of possible Euro coins that could be inserted in a vending machine.

Type of coin

1 cent

2 cents

5 cents

10 cents

2 cents

50 cents

1 euro

2 euros

In order to design the digital interface between the real set of coins and the computer, it is

necessary to “codify” the possible set values using binary numbers. For the coins example, 3

bits would be enough to make the coding in the following way.

Type of coin Binary encoding

1 cent 000

2 cents 001

Figure 7: Representation of a digital valve in its two different states.

 6

M
E

D
IS

:
A

 M
e

th
o

d
o

lo
g

y
fo

r
th

e
 F

o
rm

a
ti

o
n

 o
f

H
ig

h
ly

 Q
u

a
li
fi

e
d

 E
n

g
in

e
e

rs
 a

t
M

a
s
te

rs
 L

e
ve

l
in

 t
h

e
 D

e
s
ig

n
 a

n
d

 D
e

ve
lo

p
m

e
n

t
o

f
A

d
va

n
c
e

d
 I

n
d

u
s
tr

ia
l
In

fo
rm

a
ti

c
s
 S

ys
te

m
s

5 cents 010

10 cents 011

2 cents 100

50 cents 101

1 euro 110

2 euros 111

The number of bits for the digital representation depends on the encoding technique. Al least,

a set of “n” values requires a minimum of ceiling(log2(n)) bits for the encoding.

3.2.3.2 Analog signals

If the physical variable of interest can take values in a continuous range, then the signal is

called analog. Typical analog signals in a process can be temperature, speed, pressure, etc.

In these cases, analog sensors/actuators are utilized. These devices have a transfer function

that relates the physical magnitude with an electrical magnitude. For example, the figure 8

shows the transfer function of a thermocouple.

Figure 8: Transfer function of a thermocouple.

3.3 Data acquisit ion systems

3.3.1 Basic concepts

7

M
E

D
IS

:
A

 M
e

th
o

d
o

lo
g

y
fo

r
th

e
 F

o
rm

a
ti

o
n

 o
f

H
ig

h
ly

 Q
u

a
li
fi

e
d

 E
n

g
in

e
e

rs
 a

t
M

a
s
te

rs
 L

e
ve

l
in

 t
h

e
 D

e
s
ig

n
 a

n
d

 D
e

ve
lo

p
m

e
n

t
o

f
A

d
va

n
c
e

d
 I

n
d

u
s
tr

ia
l
In

fo
rm

a
ti

c
s
 S

ys
te

m
s

A data acquisition system (DAQ) is a requirement to allow the flow between the controlling

computer system and the physical world. The most basic approach for this is to incorporate

specific hardware in the IO subsystem of the computer. A typical IO mechanism in the form

get the input signals in the computer system. As an example, figure 9 shows a typical DAQ

card for personal computer that is inserted in the IO subsystem of the computer.

Figure 9: Typical DAQ card for personal computers.

Figure 10 shows a simplified the diagram of the DAQ hardware. Viewed from the outside

world to the inside of hardware IO subsystem of the computer, there is adaption circuitry

responsible for conditioning the electrics levels, then electrical levels are converted to digital

information and, finally, information flows to/from IO registers (data and control).

Ficar (dibuix *3 ##BUSCAR) i explicar-ho un poc

Figure 10: Simplified diagram of a DAQ subsystem.

Depending on the type of architecture of the computer these registers will be seen form the

software side as memory addresses in the main memory (for example in the ARM

architecture) or as ports addresses (for example in the x86 processors in PCs).

As an example, next fragment of code lets to read a device's register of the x86 architecture.

#include <stdint.h>

#define DEVICE_ADDRESS 0xFEA7

uint32_t data;

data = inport(DEVICE_ADDRESS);

These registers will contain a copy of binary data that is moving from/to the computer. The

size of those registers will depend on the hardware, but, in general, they will be in groups of

8, 16 or 32 bits.

There are more complex approaches for the design of DAQ subsystems. It is interesting to

note the addition of some networking facilities to promote flexibility and/or to reach remote

signals. For figure 11 shows an USB-based DAQ card.

 8

M
E

D
IS

:
A

 M
e

th
o

d
o

lo
g

y
fo

r
th

e
 F

o
rm

a
ti

o
n

 o
f

H
ig

h
ly

 Q
u

a
li
fi

e
d

 E
n

g
in

e
e

rs
 a

t
M

a
s
te

rs
 L

e
ve

l
in

 t
h

e
 D

e
s
ig

n
 a

n
d

 D
e

ve
lo

p
m

e
n

t
o

f
A

d
va

n
c
e

d
 I

n
d

u
s
tr

ia
l
In

fo
rm

a
ti

c
s
 S

ys
te

m
s

Figure 11: USB-based DAQ card.

In any case, the internal design of a remote DAQ follows the same architecture and the same

programming principles.

Next sections explain the basics of treatment of each type of signal: digitals and analog.

3.3.2 Digital input

By means of the “digital input” mechanism, we obtain the information from the physical

signals that can be in two possible states (High/Low, 5V/0V, ...) and translate to digital bits

(1/0). Figure 12 shows a block diagram for the digital input mechanism.

Figure 12: Diagram of the digital input subsystem.

9

M
E

D
IS

:
A

 M
e

th
o

d
o

lo
g

y
fo

r
th

e
 F

o
rm

a
ti

o
n

 o
f

H
ig

h
ly

 Q
u

a
li
fi

e
d

 E
n

g
in

e
e

rs
 a

t
M

a
s
te

rs
 L

e
ve

l
in

 t
h

e
 D

e
s
ig

n
 a

n
d

 D
e

ve
lo

p
m

e
n

t
o

f
A

d
va

n
c
e

d
 I

n
d

u
s
tr

ia
l
In

fo
rm

a
ti

c
s
 S

ys
te

m
s

In the right side of the diagram, we have physical digital lines that will be connected to

adequate sensors. The lines can be in two possible states depending on the state that the

digital sensor generates. The interface electronics will be in charge of translating these

electrical levels into contents in corresponding bits inside the registers.

The type of digital signal applied to the line and its translation to a binary value will depend

on the design of the hardware. For example, if the lines are TTL compatible, then:

 For 5 volts we have a “1” logic value.

 For 0 volts we have a “0” logic value.

From the software programming perspective, reading a digital input is based on reading the

specific data register associated with the data acquisition hardware, so it is needed to learn

how to handle correctly the bits inside these registers. In general these registers are read in

block and it is not possible to read a single line individually.

The next step is to elect to which line each sensor is connected to. For example, we could

connect an overflow sensor to the bit 0 of the register of the digital input, and we could assign

the bits 3, 2 and 1 of a digital coin reader. See figure 13.

Figure 13: Example of pin assignment.

Taking into consideration that we read the complete input register, we need to apply the

appropriate mask to discriminate the adequate bits an interpret it. The use of the logical AND

operator (& in C language) is necessary here.

For example, to know the state of the sensor, we need to apply the following mask to the read

value of the register.

 bN ... b6 b5 b4 b3 b2 b1 b0

AND 0 0 0 0 0 0 0 1

 0 0 0 0 0 0 0 b0

A minimal fragment of C code to deal with this sensor could be:

 10

M
E

D
IS

:
A

 M
e

th
o

d
o

lo
g

y
fo

r
th

e
 F

o
rm

a
ti

o
n

 o
f

H
ig

h
ly

 Q
u

a
li
fi

e
d

 E
n

g
in

e
e

rs
 a

t
M

a
s
te

rs
 L

e
ve

l
in

 t
h

e
 D

e
s
ig

n
 a

n
d

 D
e

ve
lo

p
m

e
n

t
o

f
A

d
va

n
c
e

d
 I

n
d

u
s
tr

ia
l
In

fo
rm

a
ti

c
s
 S

ys
te

m
s

 uint32_t data;

 data = inport(???);

 if ((data & 0x01) != 0) {

 printf (“Upss! Tank overflowww!!!”);

 } else {

 printf (“No overflow.”);

 }

}

When developing the code you have to try to deliver the information from the data acquisition

subsystem in the most abstract and clear manner possible to the rest of the application. This

simple code can is the basis for the following example that provides the adequate function for

reading the overflow sensor of the tank. See how the enumeration values are utilized for

providing an abstraction of the electronic world.

enum TOverflowStatus { OVERFLOW_YES, OVERFLOW_NO};

TOverflowStatus process_ReadOverflowSensor(void){

 uint32_t data;

 data = inport(???);

 if ((data & 0x1) ! =0) {

 return OVERFLOW_YES;

 } else {

 return OVERFLOW_NO;

 }

}

A similar approach can be applied to the coin reader. The following fragment of code creates

an abstraction of the underlying hardware.

enum TCoin { COIN_1_CENT, COIN_2_CENTS, … , COIN_2_EURO};

TCoin CoinRead(void) {

 uint32_t data;

 uint32_t coin_data;

 data = inport(???);

..coin_data = (data & 0x0E) >> 1;

 switch (coin_data) {

 case 0x0:

 return COIN_1_CENT;

 break;

…

 case = 0x7:

11

M
E

D
IS

:
A

 M
e

th
o

d
o

lo
g

y
fo

r
th

e
 F

o
rm

a
ti

o
n

 o
f

H
ig

h
ly

 Q
u

a
li
fi

e
d

 E
n

g
in

e
e

rs
 a

t
M

a
s
te

rs
 L

e
ve

l
in

 t
h

e
 D

e
s
ig

n
 a

n
d

 D
e

ve
lo

p
m

e
n

t
o

f
A

d
va

n
c
e

d
 I

n
d

u
s
tr

ia
l
In

fo
rm

a
ti

c
s
 S

ys
te

m
s

 return COIN_2_EURO;

 break;

}

4 Seminar: DAQ application with National Instruments devices

4.1 Objectives

 To understand the application of the National Instruments USB-6008 DAQ card.

 To install, configure and use a commercial DAQ Card.

4.2 The NI USB-6008 DAQ

The National Instruments USB-6008 DAQ card will utilized for applying the terethical concepts

presented in the lecturer session. These are their main advantages:

 It is a low-cost, general purpose card.

 It is ideal for teaching but is very limited when applying it to projects with more strict

requirements.

 In the case of a more serious project, another card is recommended.

 12

M
E

D
IS

:
A

 M
e

th
o

d
o

lo
g

y
fo

r
th

e
 F

o
rm

a
ti

o
n

 o
f

H
ig

h
ly

 Q
u

a
li
fi

e
d

 E
n

g
in

e
e

rs
 a

t
M

a
s
te

rs
 L

e
ve

l
in

 t
h

e
 D

e
s
ig

n
 a

n
d

 D
e

ve
lo

p
m

e
n

t
o

f
A

d
va

n
c
e

d
 I

n
d

u
s
tr

ia
l
In

fo
rm

a
ti

c
s
 S

ys
te

m
s

Characteristics:

 Cheap (about €150).

 USB connection interface with the computer.

 12 digital input/output TTL compatible channels.

 8 mono-polar or 4 differential inputs as analog input of 12 bits.

 Variable gain in differential input mode.

 2 analog output channels of 12 bits.

 1 32 bit digital counter.

ACTIVITY: In groups, access the National Instruments web page and check the details about

this card downloading and reading the document named “NI USB-6008/6009 User Guide And

Specifications”.

4.3 Digital input/output connections

In this seminar, we are interested on digital input. This is the diagram of physical connection

to the card.

Figure 1: Package contents for the NI USB-6008 DAQ

13

M
E

D
IS

:
A

 M
e

th
o

d
o

lo
g

y
fo

r
th

e
 F

o
rm

a
ti

o
n

 o
f

H
ig

h
ly

 Q
u

a
li
fi

e
d

 E
n

g
in

e
e

rs
 a

t
M

a
s
te

rs
 L

e
ve

l
in

 t
h

e
 D

e
s
ig

n
 a

n
d

 D
e

ve
lo

p
m

e
n

t
o

f
A

d
va

n
c
e

d
 I

n
d

u
s
tr

ia
l
In

fo
rm

a
ti

c
s
 S

ys
te

m
s

Figure 2: Digital IO connection schematics.

ACTIVITY: In groups, read the document named “NI USB-6008/6009 User Guide And

Specifications” and analyze the section related to IO connections.

4.4 Software l ibraries: NI -DAQmx

The best option for developing software using the C/C++ language is to uses the NI-DAQmx

libraries provided by the manufacturer. These libraries offer a common interface for all data

acquisition cards.

This is very important because, in general, a change of the model and/or manufacturer of the

card brings a change of libraries and API, so the applications must be rewritten.

NIDAQmx libraries are available for the Microsoft Windows, MacOX and Linux platforms.

The main advantages of NI-DAQmx are:

 The interface is common for all cards. The programs need no change when changing

another card

 Multiplatform: Windows, Linux Mac OSX.

 High level functions: direct reading of thermocouples, accelerometers, multi-thread

programming, etc.

 NI Labview, NI Labwindows/CVI, Microsoft Visual Basic, Microsoft Visual C++ and

ANSI C interfaces.

 14

M
E

D
IS

:
A

 M
e

th
o

d
o

lo
g

y
fo

r
th

e
 F

o
rm

a
ti

o
n

 o
f

H
ig

h
ly

 Q
u

a
li
fi

e
d

 E
n

g
in

e
e

rs
 a

t
M

a
s
te

rs
 L

e
ve

l
in

 t
h

e
 D

e
s
ig

n
 a

n
d

 D
e

ve
lo

p
m

e
n

t
o

f
A

d
va

n
c
e

d
 I

n
d

u
s
tr

ia
l
In

fo
rm

a
ti

c
s
 S

ys
te

m
s

In order to use these libraries for the Qt Framework Windows Open Source version, follow

the indications available at http://www.disca.upv.es/aperles/qt/qt_nidaqmx/qt_nidaqmx.html.

Based, reading the National Instruments documents about the library can be cumbersome, so

some explanation is included here before starting to work.

The working philosophy of the library is:

 Create acquisition tasks associated to “channels”.

 Use a task when we need an acquisition.

About tasks, saying that:

 Conceptually, a task represents a measure or a signal generation that is going to be

done.

 In this case it is a set of one or more virtual channels, with timing, trigger and other

properties.

 All the channels included in a task must be of the same type, like analog input, digital

output, counter output....

 To make a measure or generate a signal with a task these step have to be followed:

1. Create a task or load an existent one. Function DAQmxCreateTask().

2. Configure the channel and, if necessary, timing and trigger.

3. Read or write or samples.

4. Delete the taskHandle. DAQmxClearTask().

 If the task is going to repeat over time (e.g. a loop), step 3 is repeated. You can use

functions such as DAQmxStartTask() and DAQmxStopTask().

A task needs “channels”. Channels are:

 Two types: physical and virtual.

 A physical channel is a terminal or pin through which we can measure or generate a

signal (analog or digital). Each physical channel has a basic format “name of

device/name of channel”, for example Dev2/ao5 or Dev6/ctr3.

 The virtual channels are software entities that encapsulate the physical channel with

another information specific for it (range, terminal configuration, scale, etc.) , that

formats the data.

 Different types of virtual channels can be crated depending on the type of signal and

its direction:

 Analog input channels

 Analog output channels

 Digital I/O channels (based on lines or in ports)

 Counter I/O channels

http://www.disca.upv.es/aperles/qt/qt_nidaqmx/qt_nidaqmx.html

15

M
E

D
IS

:
A

 M
e

th
o

d
o

lo
g

y
fo

r
th

e
 F

o
rm

a
ti

o
n

 o
f

H
ig

h
ly

 Q
u

a
li
fi

e
d

 E
n

g
in

e
e

rs
 a

t
M

a
s
te

rs
 L

e
ve

l
in

 t
h

e
 D

e
s
ig

n
 a

n
d

 D
e

ve
lo

p
m

e
n

t
o

f
A

d
va

n
c
e

d
 I

n
d

u
s
tr

ia
l
In

fo
rm

a
ti

c
s
 S

ys
te

m
s

It is required the creation of a channel associated with physical lines before starting the

acquisition of digital signals. This can be accomplished using the function:

 DAQmxCreateDIChan()

To use a task configurated with a digital input channel, we can use the following functions:

 DAQmxReadDigitalScalarU32() -> to read the entire port

 DAQmxReadDigitalLines() -> to read individual lines or groups

 DAQmxReadDigitalU8() -> to read the entire port

5 Lab: Digital input

5.1 Objective

The goal is to implement the code for handling a digital input of the NI USB-6008 DAQ card

to read the state of a digital sensor.

5.2 Equipment

 Personal Computer with Microsoft Windows 7 or superior operating system.

 Open source version of Qt framework for Microsoft Windows.

 Data acquisition card National Instruments USB-6008.

 1 pushbutton / switch and one 2K2 resistor.

 Copper wires, or male to male Dupont wires

 Screwdriver.

 Breadboard.

5.3 Departing point

The main objective of the application is to read the state of a digital input. To provide the

electronic state to the input of the DAQ card, a simple push-button or switch can simulate the

operation of the liquid overflow sensor, that will apply a logic signal (1/0) to the

corresponding TTL compatible input.

The configuration is as follows,

 16

M
E

D
IS

:
A

 M
e

th
o

d
o

lo
g

y
fo

r
th

e
 F

o
rm

a
ti

o
n

 o
f

H
ig

h
ly

 Q
u

a
li
fi

e
d

 E
n

g
in

e
e

rs
 a

t
M

a
s
te

rs
 L

e
ve

l
in

 t
h

e
 D

e
s
ig

n
 a

n
d

 D
e

ve
lo

p
m

e
n

t
o

f
A

d
va

n
c
e

d
 I

n
d

u
s
tr

ia
l
In

fo
rm

a
ti

c
s
 S

ys
te

m
s

The overflow sensor uses the following logic:

 0 (0V) → There are overflow

 1 (+5 V) → No overflow

The assembly diagram of the components and board is as follows,

From the point of view of the software, you can use the following C header file to provide

prototypes and definitions for an initialization function for the DAQ hardware and a read

function.

/**

 @file process.h

 @brief Process interface prototypes for GELASA project

17

M
E

D
IS

:
A

 M
e

th
o

d
o

lo
g

y
fo

r
th

e
 F

o
rm

a
ti

o
n

 o
f

H
ig

h
ly

 Q
u

a
li
fi

e
d

 E
n

g
in

e
e

rs
 a

t
M

a
s
te

rs
 L

e
ve

l
in

 t
h

e
 D

e
s
ig

n
 a

n
d

 D
e

ve
lo

p
m

e
n

t
o

f
A

d
va

n
c
e

d
 I

n
d

u
s
tr

ia
l
In

fo
rm

a
ti

c
s
 S

ys
te

m
s

*/

#ifndef PROCESS_H

#define PROCESS_H

void process_Init(void);

enum TOverflowStatus {OVERFLOW_YES, OVERFLOW_NO};

TOverflowStatus process_ReadSensorOverflow(void);

#endif

For the implementation, the following code is appropriate for handling the DAQ card and the

sensor. The name of the card definition must be adapted to the particular configuration in your

computer system

/**

 @file process.c

 @brief Process interface implementation for GELASA project

 This module implements the functions for a National Instruments USB-

6008 DAQ

*/

// Here module parameters for easing the configuration of the module

#define DAQ_NAME "InfiDAQ" // DAQ user assigned name

#define DIGITAL_INPUT_PORT "port0" // port used for digital

input

#define OVERFLOW_SENSOR_BIT 0 // line used for the

overflow sensor

// The following lines area trick for letting to include the header

NIDAQmx.h para NIDAQmx versión 9.1.7

 18

M
E

D
IS

:
A

 M
e

th
o

d
o

lo
g

y
fo

r
th

e
 F

o
rm

a
ti

o
n

 o
f

H
ig

h
ly

 Q
u

a
li
fi

e
d

 E
n

g
in

e
e

rs
 a

t
M

a
s
te

rs
 L

e
ve

l
in

 t
h

e
 D

e
s
ig

n
 a

n
d

 D
e

ve
lo

p
m

e
n

t
o

f
A

d
va

n
c
e

d
 I

n
d

u
s
tr

ia
l
In

fo
rm

a
ti

c
s
 S

ys
te

m
s

// in the Qt LGPL version. These are compiler dependent.

// See http://www.disca.upv.es/aperles/qt/qt_nidaqmx/qt_nidaqmx.html

#include <QtGlobal>

#ifdef Q_OS_WIN32

 typedef unsigned long long uInt64;

 #define __int64 long long int

#endif

#include <NIDAQmx.h>

#include "process.h"

// Global variables ---

--

TaskHandle digital_input_task;

/**

****/

/**

 @brief Inits the DAQ system

 @param none

 @returns none

 This function must be called before using any adquisition functions

*/

void process_Init(void)

{

 // digital input preparation

 // first the task creation

 DAQmxCreateTask("Digital input task",&digital_input_task);

 // configure the task for reading a complete port

DAQmxCreateDIChan(digital_input_task,DAQ_NAME/**/"/"/**/DIGITAL_INPUT_PORT,

"", DAQmx_Val_ChanForAllLines);

}

/**

****/

19

M
E

D
IS

:
A

 M
e

th
o

d
o

lo
g

y
fo

r
th

e
 F

o
rm

a
ti

o
n

 o
f

H
ig

h
ly

 Q
u

a
li
fi

e
d

 E
n

g
in

e
e

rs
 a

t
M

a
s
te

rs
 L

e
ve

l
in

 t
h

e
 D

e
s
ig

n
 a

n
d

 D
e

ve
lo

p
m

e
n

t
o

f
A

d
va

n
c
e

d
 I

n
d

u
s
tr

ia
l
In

fo
rm

a
ti

c
s
 S

ys
te

m
s

/**

 @brief Reads the overflow sensor

 @param none

 @retval OVERFLOW_YES or OVERFLOW_NO

*/

TOverflowStatus process_ReadSensorOverflow(void)

{

 uInt32 data;

 DAQmxStartTask(digital_input_task);

 DAQmxReadDigitalScalarU32(digital_input_task,0.0,&data,NULL);

 DAQmxStopTask(digital_input_task);

 // test the bit, 0=YES, 1=NO

 if ((data & (1<<OVERFLOW_SENSOR_BIT)) == 0) {

 return(OVERFLOW_YES);

 } else {

 return(OVERFLOW_NO);

 }

}

Now, create a Qt application and adjust the .pro file in order to provide information about the

NIDAQmx libraries. Adjust to your own system installation

National Instruments NIDAQmx configuration

win32 {

 INCLUDEPATH += "C:/Archivos de programa/National Instruments/NI-

DAQ/DAQmx ANSI C Dev/include"

 LIBS += -L"C:/Archivos de programa/National Instruments/NI-DAQ/DAQmx

ANSI C Dev/lib/msvc"

 LIBS += -lNIDAQmx

}

 20

M
E

D
IS

:
A

 M
e

th
o

d
o

lo
g

y
fo

r
th

e
 F

o
rm

a
ti

o
n

 o
f

H
ig

h
ly

 Q
u

a
li
fi

e
d

 E
n

g
in

e
e

rs
 a

t
M

a
s
te

rs
 L

e
ve

l
in

 t
h

e
 D

e
s
ig

n
 a

n
d

 D
e

ve
lo

p
m

e
n

t
o

f
A

d
va

n
c
e

d
 I

n
d

u
s
tr

ia
l
In

fo
rm

a
ti

c
s
 S

ys
te

m
s

Add this module to a fresh Qt application and proceed to build the code to verify the absence

of errors.

In the MainForm, add to buttons and a label as follow,

Associate “slots” to the buttons and provide code similar to the following one, (see bold text)

#include "mainwindow.h"

#include "ui_mainwindow.h"

#include "process.h"

MainWindow::MainWindow(QWidget *parent) :

 QMainWindow(parent),

 ui(new Ui::MainWindow)

{

 ui->setupUi(this);

}

MainWindow::~MainWindow()

{

 delete ui;

}

void MainWindow::on_btInit_clicked()

{

 process_Init();

}

21

M
E

D
IS

:
A

 M
e

th
o

d
o

lo
g

y
fo

r
th

e
 F

o
rm

a
ti

o
n

 o
f

H
ig

h
ly

 Q
u

a
li
fi

e
d

 E
n

g
in

e
e

rs
 a

t
M

a
s
te

rs
 L

e
ve

l
in

 t
h

e
 D

e
s
ig

n
 a

n
d

 D
e

ve
lo

p
m

e
n

t
o

f
A

d
va

n
c
e

d
 I

n
d

u
s
tr

ia
l
In

fo
rm

a
ti

c
s
 S

ys
te

m
s

void MainWindow::on_btReadOverflowSensor_clicked()

{

 if (process_ReadSensorOverflow() == OVERFLOW_YES) {

 ui->lbOverflowState->setText("DANGER Overflow!!!");

 } else {

 ui->lbOverflowState->setText("No overflow");

 }

}

Run it to check its operation.

If it does not work properly, try to enhance de process module checking the return value of

the DAQ functions. I.e.,

 int32 daq_error;

 // apply to each DAQ function call

 daq_error=DAQmxCreateTask(…

 if(daq_error != 0) {

 printf("Problems!!!");

 exit(1);

 }

5.4 Activity

Include a QTimer object that automatically reads the state of sensor every 500 milliseconds.

Add two buttons to activate / deactivate the Timer (at the start of the app, the timer should be

disabled).

This could be the aspect of the app,

 22

M
E

D
IS

:
A

 M
e

th
o

d
o

lo
g

y
fo

r
th

e
 F

o
rm

a
ti

o
n

 o
f

H
ig

h
ly

 Q
u

a
li
fi

e
d

 E
n

g
in

e
e

rs
 a

t
M

a
s
te

rs
 L

e
ve

l
in

 t
h

e
 D

e
s
ig

n
 a

n
d

 D
e

ve
lo

p
m

e
n

t
o

f
A

d
va

n
c
e

d
 I

n
d

u
s
tr

ia
l
In

fo
rm

a
ti

c
s
 S

ys
te

m
s

6 Mini-project : Implementation of the process interface

module: Digital input

Develop the part of the process module related to digital input.

Validate the developed functions creating the appropriate test functions.

7 Extra: activities

ACTIVITY: Signals table of the tank of liquids model

When electing the sensors and actuators for a given IIS project it is fundamental to document

the type of sensor and its connections. A simple table can be used to gather that information.

Given the following diagram of the tank of liquids problem, decide the nature and sense of the

sensors and actuators connected to the tank model. Take into consideration that the election

depends on the problem to be solved: the same design could use analog or digital devices

based on the requisites.

And fill in the following table.

Signal name Type Sense Connection Description

23

M
E

D
IS

:
A

 M
e

th
o

d
o

lo
g

y
fo

r
th

e
 F

o
rm

a
ti

o
n

 o
f

H
ig

h
ly

 Q
u

a
li
fi

e
d

 E
n

g
in

e
e

rs
 a

t
M

a
s
te

rs
 L

e
ve

l
in

 t
h

e
 D

e
s
ig

n
 a

n
d

 D
e

ve
lo

p
m

e
n

t
o

f
A

d
va

n
c
e

d
 I

n
d

u
s
tr

ia
l
In

fo
rm

a
ti

c
s
 S

ys
te

m
s

overflow Not now Model, range, transfer function

overheat Not now

electrovalve Not now

heater Not now

temperature Not now

level Not now

pump Not now

ACTIVITY: Liquids level sensor.

Locate a liquids level sensor in Internet and present it to your colleagues.

ACTIVITY: Implement functions for handling the overheat sensor.

8 References

NI USB-6008/6009 User Guide And Specifications. Available at:

http://digital.ni.com/manuals.nsf/websearch/CE26701AA052E1F0862579AD0053BE19

http://digital.ni.com/manuals.nsf/websearch/CE26701AA052E1F0862579AD0053BE19

